Risk-benefit associated with azithromycin: A brief review

  • Anil Kumar Pradhan Roland Institute of Pharmaceutical Sciences Brahmapur, Odisha India- 760004
  • Ajit Nahak Royal College of Pharmacy and Health Sciences, Brahmapur, Odisha India- 760002
  • Gyanendra Narayan Mohapatra Roland Institute of Pharmaceutical Sciences Brahmapur, Odisha India- 760004
Keywords: Macrolide antibiotics, ductopenia, leukopenia, conjunctivitis, non-occupational allergic contact dermatitis, ototoxicity

Abstract

Introductions: Azithromycin is the most popular prescribed antimicrobial agent around the world. It comes under the class of macrolide antibiotics. Because of its higher efficacy, tolerance, and broad-spectrum activity, it is primarily used in upper and lower respiratory tract infections, some sexually transmitted infections, and major bacterial infections.

Methods: Pieces of literature were reviewed to access the risk and benefits associated with azithromycin.

Results: Generally, this is commercially available in solids, liquids, and ophthalmic formulations due to its minimal adverse events. It is also used in the case of COVID-19 drug therapy due to its pharmacological and therapeutic properties.

Conclusions: The review of literature presented that it may increase the risk of cardiac death, hepatic injury, ototoxicity, hypersensitivity reactions.

Downloads

Download data is not yet available.

Author Biographies

Anil Kumar Pradhan, Roland Institute of Pharmaceutical Sciences Brahmapur, Odisha India- 760004

Department of Pharmacology

Ajit Nahak, Royal College of Pharmacy and Health Sciences, Brahmapur, Odisha India- 760002

Department of Pharmacology

Gyanendra Narayan Mohapatra, Roland Institute of Pharmaceutical Sciences Brahmapur, Odisha India- 760004

Department of Pharmacology

References

Bartle W. R. (1980). Possible warfarin-erythromycin interaction. Archives of internal medicine, 140(7), 985–987.

Brown, K. A., Khanafer, N., Daneman, N., & Fisman, D. N. (2013). Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrobial agents and chemotherapy, 57(5), 2326–2332.

Chandrupatla, S., Demetris, A. J., & Rabinovitz, M. (2002). Azithromycin-induced intrahepatic cholestasis. Digestive diseases and sciences, 47(10), 2186–2188.

Chave, J. P., Munafo, A., Chatton, J. Y., Dayer, P., Glauser, M. P., & Biollaz, J. (1992). Once-a-week azithromycin in AIDS patients: tolerability, kinetics, and effects on zidovudine disposition. Antimicrobial agents and chemotherapy, 36(5), 1013–1018.

Debruyne, D., Jehan, A., Bigot, M.C. et al. (1986). Spiramycin has no effect on serum theophylline in asthmatic patients. European journal of clinical pharmacology, 30, 505–507.

Deshpande, A., Pasupuleti, V., Thota, P., Pant, C., Rolston, D. D., Sferra, T. J., Hernandez, A. V., & Donskey, C. J. (2013). Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. The Journal of antimicrobial chemotherapy, 68(9), 1951–1961.

Dylewski J. (1988). Irreversible sensorineural hearing loss due to erythromycin. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne, 139(3), 230–231.

Foulds, G., Hilligoss, D. M., Henry, E. B., & Gerber, N. (1991). The effects of an antacid or cimetidine on the serum concentrations of azithromycin. Journal of clinical pharmacology, 31(2), 164–167.

Gedar Totuk, O. M., & Yukselen, A. (2019). Acute allergic reaction caused by topical azithromycin eye drops: A report of two cases. Saudi journal of ophthalmology : official journal of the Saudi Ophthalmological Society, 33(2), 180–182.

Guo, D., Cai, Y., Chai, D., Liang, B., Bai, N., & Wang, R. (2010). The cardiotoxicity of macrolides: a systematic review. Die Pharmazie, 65(9), 631–640.

Hancox, J. C., Hasnain, M., Vieweg, W. V., Crouse, E. L., & Baranchuk, A. (2013). Azithromycin, cardiovascular risks, QTc interval prolongation, torsade de pointes, and regulatory issues: A narrative review based on the study of case reports. Therapeutic advances in infectious disease, 1(5), 155–165.

Higa, F., & Saito, A. (2000). The Japanese journal of antibiotics, 53 Suppl B, 125–135.

Hopkins S. (1991). Clinical toleration and safety of azithromycin. The American journal of medicine, 91(3A), 40S–45S.

Huang, B. H., Wu, C. H., Hsia, C. P., & Yin Chen, C. (2007). Azithromycin-induced torsade de pointes. Pacing and clinical electrophysiology : PACE, 30(12), 1579–1582.

Jensen, C. W., Flechner, S. M., Van Buren, C. T., Frazier, O. H., Cooley, D. A., Lorber, M. I., & Kahan, B. D. (1987). Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation, 43(2), 263–270.

Kim, M. H., Berkowitz, C., & Trohman, R. G. (2005). Polymorphic ventricular tachycardia with a normal QT interval following azithromycin. Pacing and clinical electrophysiology: PACE, 28(11), 1221–1222.

Kronbach, T., Fischer, V., & Meyer, U. A. (1988). Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clinical pharmacology and therapeutics, 43(6), 630–635.

Lighter, J., & Raabe, V. (2020). Azithromycin Should Not Be Used to Treat COVID-19. Open forum infectious diseases, 7(6), ofaa207.

López-Lerma, I., Romaguera, C., & Vilaplana, J. (2009). Occupational airborne contact dermatitis from azithromycin. Clinical and experimental dermatology, 34(7), e358–e359.

Ludden T. M. (1985). Pharmacokinetic interactions of the macrolide antibiotics. Clinical pharmacokinetics, 10(1), 63–79.

Maggioli, C., Santi, L., Zaccherini, G., Bevilacqua, V., Giunchi, F., Caraceni, P. (2011). A Case of Prolonged Cholestatic Hepatitis Induced by Azithromycin in a Young Woman. Case reports in hepatology, 2011, 1-4.

Martinez, M. A., Vuppalanchi, R., Fontana, R. J., Stolz, A., Kleiner, D. E., Hayashi, P. H., Gu, J., Hoofnagle, J. H., & Chalasani, N. (2015). Clinical and histologic features of azithromycin-induced liver injury. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 13(2), 369–376.e3.

McMullan, B. J., & Mostaghim, M. (2015). Prescribing azithromycin. Australian prescriber, 38(3), 87–89.

Milković-Kraus, S., Macan, J., & Kanceljak-Macan, B. (2007). Occupational allergic contact dermatitis from azithromycin in pharmaceutical workers: a case series. Contact dermatitis, 56(2), 99–102.

Nahata M. (1996). Drug interactions with azithromycin and the macrolides: an overview. The Journal of antimicrobial chemotherapy, 37 Suppl C, 133–142.

Orme, M., Back, D., Tjia, J. (1991). The lack of interactions between azithromycin and oral contraceptive steroids. British journal of Clinical pharmacology, 3J, 229.

Parra-Lara, L. G., Martínez-Arboleda, J. J., & Rosso, F. (2020). Azithromycin and SARS-CoV-2 infection: Where we are now and where we are going. Journal of global antimicrobial resistance, 22, 680–684.

Poluzzi, E., Raschi, E., Moretti, U., & De Ponti, F. (2009). Drug-induced torsades de pointes: data mining of the public version of the FDA Adverse Event Reporting System (AERS). Pharmacoepidemiology and drug safety, 18(6), 512–518.

Rapeport, W. G., Dewland, P. M., Muirhead, D. C., Forster, P. L. (1991). Lack of interaction between azithromycin and carbamazepine. In Proceedings of the British Pharmacological Society, 1991; London.

Ray, W., Murray, K., Hall, K., Arbogast, P., Stein, C. (2012). Azithromycin, and the Risk of Cardiovascular Death. New England Journal Of Medicine, 366(20), 1881-1890.

Russo, V., Puzio, G., & Siniscalchi, N. (2006). Azithromycin-induced QT prolongation in elderly patient. Acta bio-medica : Atenei Parmensis, 77(1), 30–32.

Sato, R. I., Gray, D. R., & Brown, S. E. (1984). Warfarin interaction with erythromycin. Archives of internal medicine, 144(12), 2413–2414.

Sultana, J., Cutroneo, P. M., Crisafulli, S., Puglisi, G., Caramori, G., & Trifirò, G. (2020). Azithromycin in COVID-19 Patients: Pharmacological Mechanism, Clinical Evidence and Prescribing Guidelines. Drug safety, 43(8), 691–698.

Svanstrom, H., Pasternak, B., Hviid, A. (2013). Use of Azithromycin and Death from Cardiovascular Causes. New england journal ff medicine, 368(18): 1704-1712.

Treadway, G., & Pontani, D. (1996). Paediatric safety of azithromycin: worldwide experience. The Journal of antimicrobial chemotherapy, 37 Suppl C, 143–149.

Tseng, A. L., Dolovich, L., & Salit, I. E. (1997). Azithromycin-related ototoxicity in patients infected with human immunodeficiency virus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 24(1), 76–77.

Vernillet, L., Bertault-Peres, P., Berland, Y., Barradas, J., Durand, A., & Olmer, M. (1989). Lack of effect of spiramycin on cyclosporin pharmacokinetics. British journal of clinical pharmacology, 27(6), 789–794.

Wallace, M. R., Miller, L. K., Nguyen, M. T., & Shields, A. R. (1994). Ototoxicity with azithromycin. Lancet (London, England), 343(8891), 241.

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263.

Published
2020-12-01
How to Cite
1.
Pradhan AK, Nahak A, Mohapatra GN. Risk-benefit associated with azithromycin: A brief review. jpadr [Internet]. 2020Dec.1 [cited 2024Feb.21];1(2):1-. Available from: https://jpadr.com/index.php/jpadr/article/view/12