Determination of In vitro lethality of actinomycetes antibiotic extracts from Menengai crater geothermal vents, Kenya
Abstract
Introduction: Drug resistance is the biggest threat to human existence today. This study was conducted to investigate the sensitivity of selected pathogenic microorganisms to antibiotic extracts from soils of Menengai crater geothermal vents in Kenya.
Method: Antibiotic-producing actinomycetes were isolated from geothermal vents of the crater. The isolates were identified using colony characteristics and biochemical means. Sensitivity of the selected pathogenic microorganism was carried out using primary and secondary screening techniques. Four actinomycetes coded PAN 9, PAN 18, PAN 117, and PAN 138 were selected for further analysis based on the size of the zone of inhibition and the broad spectrum of activity. Extraction of antibiotics from the selected actinomycetes was carried out using ethyl acetate. A sensitivity test of the pathogens to the extracts was done using Karby Bauer disk diffusion technique. Cytotoxicity of the antibiotic extracts was carried out using Brine shrimp lethality test and sheep blood hemolytic bioassays. The isolates presented typical actinomycetes characteristics.
Results: A total of 20 actinomycete isolates showed antagonism against the test pathogenic microorganisms. The selected actinomycetes inhibited growth of Gram-positive and negative bacterial and fungal pathogens in both primary and secondary sensitivity tests. There was a significant difference in the diameters of zones of inhibition produced by the test pathogens when subjected to the antibiotic metabolites from the selected actinomycetes (F = 6.6046 P = 0.001338).
Discussion: The minimum inhibitory concentration and minimum bactericidal concentration/minimum fungicidal concentration did not vary significantly (F=0.4503, P = 0.7187). The LC50 values of the antibiotic extracts varied from 2.438±0.47µg in PAN 9 to 9.3455±0.41µg in PAN 138. PAN 18 and PAN 117 showed partial hemolysis while PAN 9 and PAN 138 exhibited complete hemolysis of sheep blood erythrocytes. Soils from Menengai crater geothermal vents have actinomycetes that produce antibiotics. The antibiotics are cytotoxic to brine shrimps. In addition, the antibiotics cause hemolysis of sheep blood erythrocytes. There is a need to purify the antibiotics and structure elucidate them. The active antibiotic extract needs to be evaluated to determine whether the hemolysis is due to the compound itself or some other chemical constituent.
Downloads
References
Abraham, K. G. (2016). Cytotoxicity of Streptomyces sp. isolated from mangrove sediments. PARIPEX-Indian Journal Research; 5:230-232.
Adam, D., Maciejewska, M., Naômé, A., Martinet, L., Coppieters, W., Karim, L., Baurain, D. and Rigali, S. (2018). Isolation, characterization, and antibacterial activity of hard to culture actinobacteria from cave Moonmilk deposits. Antibiotics; 7(28): 1-2.
Ahmad, S. J., Lian, H. H., Basri, D. F., and Zin, N. M. (2015). Mode of action of Endephytic Streptomyces sp. SUK 25 extract against MRSA; microscopic, biochemical and time-kill analysis. International Journal of Pharmaeutical Sciences Review and Research; 30 (3): 11-17.
Ahmed, H. G. (2017). Diversity and anti- MRSA activity of halotolerant Actinobacteria from sediments in Great SaltPlains, Oklahoma. Microbial Ecology; 1:1-9.
Alan, T., Bull, H. I., Roy, S., Juan, A., Barbara, A. and Goodfellow, M. (2018). High altitude, hyper arid soils of the Central-Andes harbor mega diverse communities of actinobacteria. Extremophiles; 22:47–57.
Al-Ansari, M., Kalaiyarasi, M., Almalki, M. A. and Vijayaraghavan, P. (2020). Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University; 32 (3): 1993-1998.
Almuhayawi, M. S., Mohamed, M. S. M., Abdel-Mawgoud, M., Selim, S., Al Jaouni, S. K. and AbdElgawad, H. (2021). Bioactive Potential of Several Actinobacteria Isolated from Microbiologically Barely Explored Desert Habitat, Saudi Arabia. Biology; 10:235248.
Benhadj, M., Gacemi-Kirane, D., Menasria, T., Guebla, K. and Ahmane, Z. (2019). Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. Journal of King Saud University; 31 (4):706-712.
Berezin, V., Abdukhakimova, D., Trenozhnikova, L., Bogoyavlenskiy, A., Turmagambetova, A., Issanov, A. and Azizan, A. (2019). Antiviral activities of extremophilic actinomycetes extracts from Kazakhstan’s unique ecosystems against influenza viruses and paramyxoviruses. Virology Journal; 16:3-16.
Chen, W., Ye, K., Zhu, X., Zhang, H., Si, R., Chen, J., Chen, Z., Song, K., Yu, Z. and Han, B. (2022). Actinomycin X2, an antimicrobial depsipeptide from marine-derived Streptomyces cyaneofuscatus applied as a good natural dye for silk fabric. Marine Drugs; 20:16-30.
Davies, O. F., Adeleye, I.A. and Wang, P.G. (2015). Hyoscamine-producing marine actinomycetes from Lagos Lagoon sediment, Asian Pacific Journal of Tropical Biomedicine; 3 (2015):1-10.
Davies-Bolorunduro, O. F., Adeleye, I. A., Akinleye, M. O. and Wang, P. G. (2019). Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon. Journal of Pharmaceutical Analysis; 9:201-208.
Ekundayo, F. O. and Faniomi, A. S. (2017). Antibacterial Activities of Streptomyces collinus and Streptomyces refuineus from cocoa, orange and timber plantation soils in Akure Metropolis. Asian Journal of Medicine and Health; 2(1):1-10.
Elbendary, A. A., Hessain, A. M., El-Hariri, M. D., Adel, S. A., Moussa, I. M., Mubarak, A. S., Kabli, S. A., Hemeg, H. A. and El, J. A. (2018). Isolation of antimicrobial producing Actinobacteria from soil samples. Saudi Journal of Biological Sciences; 25:44-46.
El-Naggar, N. E. A. and El-Shweihy, N. M. (2020). Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Science Reports; 10:1-21.
Hathaway, J. J. M., Garcia, M. G. and Moya, M. (2014). Comparison of bacterial diversity in Azorean and Hawaiian lava cave microbial mats. Geomicrobiology Journal; 31: 205–20.
Janardhan, A., Kumar, A. P. and Viswanath, B. (2014). Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnology Research International; 20:1-8.
Janardhan, A., Kumar, A. P., Viswanath, B., Saigopal, D. V. R. and Narasimha, G. (2014). Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnology Research International; 14:217-230.
Jayshree, D. P., Juliann, D., and Huda, M. (2016). Discovery of antibiotic biomolecule(s): a multidisciplinary approach. International Journal Biochemical Research; 5(7):112-118.
Jodi, W. L., Hooi-Leng, S., Tahir, M. K., Lay-Hong, C., Priyia, P., Kok-Gan, C., Bey-Hing, G. and Learn-Han, L. (2017). The potential of Streptomycesas biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology; 8(3): 1-10.
Kekuda, P. T. R., Onkarappa, R. and Raghavendra, H. L. (2013). Pharmacological activities of Streptomyces species PO- 178 isolated from rhizosphere soil of Agumbe, Karnataka. Science, Technology and Arts Research Journal; 2(2):83-91.
Khattab, A., Eltahir, H. B. and Humodi, A. S. (2016). Streptomyces: isolation, optimization of culture conditions and extraction of secondary metabolites. International Current Pharmaceutical Journal; 5(3): 27-32.
Kumar, P. S., Al-Dhabi, N. A., Duraipandiyan, V., Balachandran, C. and Kumar, P. P. (2014). Ignacimuthu, S. In vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. BMC Microbiology; 14:291-303.
Lertcanawanichakul, M., Jeenduang, N. and Chawawisit, K. (2021). In-vitro Anti-food poisoning bacteria and cytotoxic activities of bioactive compounds produced by Streptomyces sp. A10 isolated from fermented food. Journal of Pharmacy and Pharmacology; 9:397-405.
Lewin, G. R., Carlos, C., Chevrette, M. G. and Horn, H. A. (2016). Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Reviews of Microbiology; 70: 235-254.
Li, Q., Chen, X., Jiang, Y. and Jiang, C. (2016). Cultural, physiological, and biochemical identification of Actinobacteria. Actinobacteria-Basics Biotechnological Applications; 87-111-122.
Lin, S., Chang, C., Hsu, C., Tsai, M., Cheng, H., Leong, M. K., Sung, P., Chen, J. and Weng, C. (2020). Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. British Journal of Pharmacology; 177:1409-1423.
Low, A. L. M., Mohamad, S. A. S. and Abdullah, M. F. F. (2015). Taxonomic diversity and antimicrobial activities of actinomycetes from manure composts. Research Journal of Microbiology; 10(11):513-522.
Maciejewska, M., Pessi, I. S., Arguelles-Arias, A., Noirfalise, P., Luis, G., Ongena, M., Barton, H., Carnol, M. and Rigali, S. (2015). Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Antonie Leeuwenhoek; 107:519-531.
Maher, O. (2017). Cytotoxicity of n-butanol extracts of Streptomyces against human breast cancer cells. International Journal of Pharmacology; 13:969-979
Martins, L. F., Antunes, L. P., Pascon, R. C., de Oliveira, J. C., Digiampietri, L. A., Barbosa, D., Peixoto, B. M., Vallim, M. A. and Viana, N. (2016). Metagenomic analysis of a tropical composting operation at the Sa˜o Paulo Zoo. Journal of Microbiology; 6(23): 260-285.
Masad, M., Sivakala, K. K., Menghani, E., Thinesh, T., Anandham, R., Sharma, G., Sivakumar, N., Jebakumar, S. R. D. and Jose, P. A. (2018). Biosynthetic potential of bioactive Streptomycetes isolated from arid region of the Thar Desert, Rajasthan (India). Frontiers in Microbiology; 9: 687-700.
Mogrovejo, D. C., Perini, L., Gostincˇ, ar C., Sepcˇ ic´ K., Turk, M., Ambrožicˇ -Avguštin, J., Brill, F. H. H. and Gunde-Cimerman, N. (2020). Prevalence of Antimicrobial Resistance and Hemolytic Phenotypes in Culturable Arctic Bacteria. Frontiers in Microbiology 11:570-567.
Mohammadipanah, F. and Wink, J. (2015). Actinobacteria from arid and desert habitats: diversity and biological activity. Frontiers in Microbiology; 6: 41-51.
Nofiani, R., Briliantoro, R. and Ardiningsih, P. (2022). Anti-bacteria and toxicity potential of a rare Actinobacterium Pseudonocardia sp. SM1A, isolated from Mangrove Park, West Kalimantan, Indonesia; Biodiversitas; 23(1):453-458.
Omeke, J. N., Anaga, A. O. and Okoye, J. A. (2018). Brine shrimp lethality and acute toxicity tests of different hydro-methanol extracts of Anacardium occidentale using in vitro and in vivo models: a preliminary study. Comparative Clinical Pathology; 27(6):1717-1721.
Omenda, P. A., Opondo, K., Lagat, J., Mungania, J., Mariita, N., Onacha, S., Simiyu, S., Wetang’ula, G., and Ouma, P., (2014). Ranking of geothermal prospects in the Kenya rift. Kenya Electricity Generating Company Limited, internal report, pp 121.
Padma, B. J., Saraswathi, K., Arumugam, P. and Shiny, R. A. (2018). Isolation, characterization and evaluation of antioxidant activities of secondary metabolites producing actinomycetes of terrestrial origin. Internationa Journal of Research in Medical Sciences; 6(3):1017-1028.
Salim, F. M., Sharmili, S. A., Anbumalarmathi, J. and Umamaheswari, K. (2017). Isolation, molecular characterization and identification of antibiotic producing actinomycetes from soil samples. Journal of Applied Pharmaceutical Science;7(9):69-75.
Saranya, S., Satheeja, S. V. and Robinson, D. J. (2017). Isolation, Screening, statistical media optimization, purification and structural characterization of bioactive compound from marine derived Streptomyces sp JS-S6. International Journal of Scientific and Research Publications; 7(6): 270-282.
Ser, H. L., Law, J. W. F., Chaiyakunapruk, N., Jacob, S. A., Palanisamy, U. D., Chan, K. G., Goh, B. H. and Lee, L. H. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Frontiers in Microbiology; 7:522-536.
Sharma, M. and Manhas, R. K. (2021). Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiology; 19:44-57.
Sharon, F. B. (2016). Gas chromatography mass spectrometry analysis and cytotoxic potential of ethyl acetate extract of Streptomyces sp. Kod10. International Journal of Pharmaceutical Sciences Review and Research; 45:244-247
Soyer, P. and Tunal, Y. (2020). Actinobacteria isolation from forest soils and determination of biological activities. Journal of the Turkish Chemica Society Section A: Chemistry; 7(2):327-34.
Tan, L. T. H., Chan, K. G., Khan, T. M., Bukhari, S. I., Saokaew, S., Duangjai, A., Pusparajah, P., Lee, L. H. and Goh, B. H. (2017). Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Frontiers in Pharmacology; 8:276-289.
Thirumurugan, D., Vijayakumar, R., Vadivalagan, C., Karthika, P. and Khan, M. K. A. (2018). Isolation, structure elucidation and antibacterial activity of methyl-4, 8-dimethylundecanate from the marine actinobacterium Streptomyces albogriseolus ECR64. Microbial Pathology; 121:166-172.
Valipour, B., Mohammadi, S. M., Abedelahi, A., Maragheh, B. F. A., Naderali, E., Dehnad, A. and Charoudeh, H. N. (2018). Culture filtrate ether extracted metabolites from Streptomyces levis ABRIINW111 increased apoptosis and reduced proliferation in acute lymphoblastic leukemia. Biomedical and Pharmacology Journal.; 108:216–223.
Waithaka, N. P, Maingi, J. M. and Nyamache, A. K. (2015). Physico-chemical analysis, microbial isolation, sensitivity test of theisolates and solar disinfection of water running in community taps and River Kandutura in Nakuru North Sub-county, Kenya. The Open Microbiology Journal; 9:117-124.
Waithaka, P. N., Mwaura, F. B., Wagacha, J. M., Gathuru, E. M. and Muriuki, B. G. (2020) Molecular characterization of four antibiotic producing actinomycetes isolated from Menengai Crater. Journal of Pharmacy Practice and Pharmaceutical Sciences; 1: 96-104.
Waithaka, P. N., Mwaura, F. B., Wagacha, J. M., Gathuru, E. M. and Githaiga, B. M. (2019). Purification and cytotoxic assays of four antimicrobial metabolites extracted from Actinomycetes of the soils of Menengai Crater, Kenya. Novel Research in Microbiology Journal; 3(3): 351-365.
Waithaka, P.N., Mwaura, F. B., Wagacha, J. M., Gathuru, E. M. and Githaiga, B. M. (2017). Antimicrobial properties of actinomycetes isolated from Menengai Crater in Kenya. CellBio; 6: 13-26.
Wang, D., Wang, C., Gui, P., Liu, H., Khalaf, S. M., Elsayed, E. A., Wadaan, M. A., Hozzein, W. N. and Zhu, W. (2017). Identification, bioactivity, and productivity of actinomycins from the marine-derived Streptomyces heliomycini. Frontiers in Microbiology; 8:1147-1160.
Warrad, M., Hassan, Y. M., Mohamed, M. S. M., Hagagy, N., Al-Maghrabi, O. A., Selim, S., Saleh, A. M. and AbdElgawad, H. (2020). A bioactive fraction from Streptomyces sp. enhances maize tolerance against drought stress. Journal of Microbiology and Biotechnology; 30:1156–1168.
Wei, Z., Xu, C., Wang, J., Lu, F., Bie, X. and Lu, Z. (2017). Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin. PeerJ; 5: e3601.
Wekesa, C., Okun D., Juma, K., Shitabule, D., Okoth, P., Nyongesa, P., Katoo, A., Mulama, S., Wamalwa, E., Mahalo, C., Koyo, M., Rotich, A., Kawaka, F. and Muoma, J. (2016). Abundance and symbiotic potential of common bean (Phaseolus vulgaris) nodule associated bacteria in Western Kenya soil. MAYFEB Journal of Agricultural Science; 1: 1-9.
Yang, X., Lianzuan Wu, L., Xu, Y., Ke, C. and Hu, F. (2018). Identification and characterization of a novel alkalistable and salt-tolerant esterase from the deep-sea hydrothermal vent of the East Pacific Rise. Microbiology Open; 12(4): 251-263.

Copyright (c) 2022 Paul Njenga Waithaka

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.